PRGGRAMMING MANIIAL
 FGR BUSCH ALPHA 3 CUNTRGL

WADKIN CDLNE DTVISIDN OF WADKIN PLC
LUDGE HILME,TRAWDEN,CULNE LANCS BB8 8RB

(1) G90 - Absolute programming, the co-ordinates of a data point are defined in relation to an absolute zero.
(2) G91 - Incremental programming, the co-ordinates of a data point are defined in relation to the preceding point.

Which ever type of programming is used needs to be stated at the beginning of the program. G90 and G91 cancel each other out.
(2) The control generates its own block numbers, ie. when you input a line of program it will be issued with the respective block number, ie. N1, N2 ... Nl3 etc.
(3) The first line of a program using the Alpha control must be G78 (start of main program), whatever block this is on needs to be noted, for later on in the program. All programs are entered consecutively, so it is one continuous run, it is therefore important to note what line each program starts on, for running the correct one.
(3) The last line of a program will read m30 (end of main program, with jump address), ADR=A (address of first line of program, G78's block number), this will jump the program back to the start each time it is run.
(4) When actually cutting you need to tell the control how fast to travel. This is done by entering a feedspeed on the first G1, G2 or $G 3$ line once it is in it will remain active for the rest of the program, unless otherwise altered. Feedspeeds can be altered on any line of the program, if you want to tell the control to slow down, say if you were cutting across the grain, or cutting a curve the new feedspeed would be programmed on the same line as the information to cut.

When working in METRIC the feed is in units of 1 milimetre/minute (maximum programmable is $9999 \mathrm{~mm} / \mathrm{min}$, or virtually 10 metres/minute)

When working in INCHES the feed is in units of $1 / 10$ inch/minute (maximum programmable is $40001 / 10$ inch/min (400 inches/minute)
(5) When actually running program, if the cutter is in 'mid-air' (ie. not cutting) then the machine needs to go as fast as possible to minimise cycle time, (for instance moving to component datum to set zero). The code for this rapid traverse is $\mathbf{G O}$, so the move to component datum could be G0 X700 Y300, as opposed to Gl X700 Y300.
(6) Entering a line of program:-

```
G - 1, 2, 3 etc.
X - co-ordinate.
Y - co-ordinate.
Z - for radius value on curve,
        for z axis movement.
F - feedspeed
S - spindle speed
M - 'M' modes, and end of program with jump address, ADR=A.
B - repetition factor ( for use With G22, G23)
C - sub-program number (G98)
H - dwell in 0.1 seconds (G4)
T - tool and radius compensation (G41, 42 and 43)
```

(7) When machine is switched on the control displays two values:-
eg. 6132
amount of memory still available

8192
total amount of memory available
(8) On switching on the memory is protected.

Mode + 9 (Manual Data Input)
then G37 - Memory enable
G38 - Memory protect
G39 - Memory clear, ? enter for yes.

WEAT IS A POINT?

Describe the points below:-

A line which is 5 units along the 'X' axis is know as X5, similarly a line which is 4 up in the 'Y' axis is known as Y4.

Where these two lines intersect is known as a point or co-ordinate.

So the point described is known as X 5 Y 4 .
(a)
(e)

If we draw a shape or component on the graph, all the intersectio points of it will lie on points of the graph, thus

> X0 Y0
(a) X 8 Y0
(b) X 8 Y 2
(c) X 6 Y 4
(d) X 6 Y 7
(e) XO Y 7
(f) XO Y 0

On the graph below plot themedelpectrackindondraw lines between the points to describe the shape.

Start from X0 Yo
X 6 Y0
X8 Y3
X8 Y7
X 2 Y 7
X0 Y3
XO Y0

This is the basis of the CNC PROGRAMMING CO-ORDINATE SYSTEM. The table of the router is measured as a grid just like the graph but with a much finer spacing (resolution).

The resolution of the Wadkin Router is .01 mm or $1 / 1000$ inch depending which units you are using.

STRAIGHT LINES AND CURVES

i) Straight Lines

All straight line moves need to be pregeded by a Gl code.

Write down the points to describe the shape below:-

All curves need to be preceded by a G2 or G3 code depending whether the circular movement is clockwise or anti-clockwise.

G2 = Clockwise circular movement
G3 = Anti-clockwise circular movement

The radius is also required, this is programmed as a + or - Z value.
The control automatically assumes that the value is positive unless otherwise stated, ie only the negative (-) sign is required.

Rule for radius value:-
If the angular movement of the curve is 180 degrees or more then the radius is programed as a positive value, eg. z 200.

If the angular movement of the curve is less than 180 degrees then the radius is programmed as a negative value, eg. $\mathrm{Z}-150$.
EG. (1) Less than $180^{\circ} \mathrm{z}-200$
(2) Greater than $180^{\circ} \mathrm{z} 200$

The X and Y co-ordinates are the end point of the arc.

Example I

G2: Clockwise movement
X700 v0: End point of the arc
z200: Radius of 180 degrees, so positive value

Example 2

G1 X400 Y0
G3 X550 Y-150 Z-150
Gl X550 Y-450

G3:
Anti-clockwise movement
X550 Y-150: End point of arc
Z-150: Radius of less than 180°, so a negative value

Putting these ' G ' codes into a complete example:-

1. G78
2. G90
3. G1 X0 Y0
4. G1 X300 Y0
5. G2 X700 Y0 Z200
6. Gl X900 Y0
7. Gl X900 Y400
8. GI X600 Y600
9. Gl Xl50 Y600
10. G2 X0 Y450 Z-150
11. Gl X0 Y0
12. M30 Al

Consider this example:-

G1 X0 Y0
G1 $\times 500$ Y0
GI X700 Y200
Gl X700 Y600
G1 X150 Y600
GI X0 Y450
Gl XO Yo

If the above component was cut with a cutter of 10 mm diameter then the component would be cut undersize by 5 mm (the radius of the cutter) because we programmed the CENTRE LINE of the cutter.

To enable us to sthl program the component as previous, but still get a true sized component we use CUTTER COMPENSATION.

This compensates for the size of the cutter, ie. moves away from the programmed path a set amount ($1 / 2$ the diameter of the cutter (radius).

This amount is stored in Mode +
There are 32 tool stores and to call up a tool store within a program you enter the tool store number under T.

If you can imagine yourself stood on top of the cutter, facing the direction of the feed:-

1. You are on the RIGHT-HAND side of the workpiece you use $\mathbf{G 4 2}$
2. You are on the LEFT-HAND side of the workpiece you use G4l

RULE (2)

To CANCEL COMPENSATION we use G40.

Cutter compensation must be put on and cancelled with a straight line move (of a distance which is more than the radius of the cutter being used) before and after cutting respectively.

NB: - It is good machining practice to feed on to and off the component in a straight a line as possible for compensation, this saves the cutter having to do any unnecessary moves.

We have used the bottom left hand corner of the workpiece as the component datum (ie. all dimensions are relative to this point).

In practice the component would be situated somewhere on the machine table.

The component datum has a distance from the bottom left hand corner of the machine table (Machine Zero Point). In this case its 50 along the ' X ' axis and 30 up in the ' x Caxis.

If there wasn't the 'moving zero point' facility the program would have to have 50 added on to every ' X ' dimension and 30 on to every ' Y ' dimension.
eg:

G1 X50	Y30	(Previously x0	Yo
Gl $\times 350$	Y30	(Previously X 300	Y0
G2 $\times 550$	Y30 R100	(Previously X 500	Yo
G1 $\times 750$	Y30	(Previously X700	Y0
Gl X750	Y330	(Previously X700	Y300)
Gl X 550	Y530	(Previously X500	Y500)
Gl X50	Y530	(Previously XO	Y500)
G1 X50	Y30	(Previously XO	Y0

What we need to do is set the bottom left hand corner of the workpiece (or the desired co-ordinates) to equal $X 0$ Y0 when on the machine table.

G78

G0	$X 500$	$Y 300$
G92 X0	Y0	

G1 $X-20 \quad Y 0$
G42 T2
Gl X0 Y0
Gl X800 Y0
Gl X800 Y100
G2 X800 Y400 $\quad \mathrm{Zl} 50$
G1 X800 Y500
GI X0 Y500
G1 X0 Y400
G2 X0 Y100 Zl50
Gl $\mathrm{XO} \quad \mathrm{YO}$
G40
Gl X0 Y-20
GI XO Y0

G92 X500 Y300

M30 A1
(Start of main program)
(Absolute programming)
(This move takes us to the component datum point relative to the machine zero point).
(The G92 will set the X an) Y co-ordinates to whatever you want them to be, in this and most cases it is XO Y0, so now the component can be programmed as before)
(Move away from the component to enable us to set cutter compensation)
(Cutter compensation to the right of the workpiece)
(Straight line move to activate compensation)
(Cancel compensation)
(Straight line move to activate cancellation) (Back to the component datum point so that we can reset its true position relative to the machine zero point)
(We are giving the X and Y co-ordinates their true position, notice that they must correspond exactly with the values set at the beginning)
(End of main program)

EXAMELES.

How to set tool length compensation.
Bring cutter down so that it is just touching the top of the workpiece using the manual panel and handwheel (vacuum clamping must be on if vacuum pumps are switched on).

Note the reading of the ' Z ' axis on the CRT display.
Go into Mode $+\sqrt[7 \lambda]{ }$, enter the number of the tool store you require and then under the ' L ' column enter the Z ' eading as a negative value.

When the tool store is called up into the program it will set the top of the workpiece to equal zero.
eg.

ABSOLUTE SUB-PROGRAMS

			$25 c$ 250 250 250	250 250 250 250
G78				Start of
G90				Absolute
G0				Rapid tra
G43	X50	Y50	Z5 Tl	Tool leng
M8				Select le
G92	X0	Y0		Set compo
G22	C1	B2		See below
M9				Retract 1
G92	X860	Y50		Select le
G44	X0	Y800	Z0 M30 A?	
G98	Cl			Start of
G0	x-20	Y0		Move away
Gl	Z-5		F200	Feed down
G42	x 0	Y0	F5000	cutter co
G1	X250	Y0		-
Gl	X250	Y250		
Gl	x 0	Y250		
GI	X0	Y-10		
G40	X0	Y-20		Cancel cu
G0	Z 5			Retract
G0	X270	Y0		Go to nex
G92	x 0	Y0		Set new
G99			N.	(End of sub

NB: - A sub-program is global ie. can be caved up from any main
program.
G22 Call up of a sub-program.
C? Name (number) of sub-program.
B? Is the repetition factor, the sub-program will automatically run once with the call up of it, so the repetition is after it has run once.

* If you want to repete the pattern above, insert the following:G0 X50 Y350
G92 X0 Yo
G 22 Cl B 2
G92 X860 Y350
To repete further just keep increasing the Y value each time.

