
www.DaltonsWadkin.com

CONTENTS

```
INTRODUCTION
GUIDENCE FOR USE OF THIS MANUAL
SECTION 1 - BASIC PARAMETRIC PROGRAMMES
SECTION 2 - MORE COMPLEX EXAMPLES
SECTION 3 - PARAMETRIC PROGRAMMES INC. JUMPS, COUNTS ETC
SECTION 4 - FURTHER USE OF PARAMETRIC FUNCTIONS
APPENDIX 1 - FORMULA SHEET
APPENDIX 2 - BASIC TRIGONOMETRY AND ALGEBRA EXAMPLES
APPENDIX 3 - SUGGESTED ANSWERS TO PROBLEMS
APPENDIX 4 - QUICK REFERENCE LIST
```


INTRODUCTION

Ever since you started programming the Bosch CC 100M control on your wadkin router, you have been using Parametric Programmes. You probably didn'i know it at the time! But if you remember using VX \& VY values (and you should) then you may have thought these were part of normal N.C. programmes. Well, in fact, they are used as INPUT VARIABLES for the G820 offset cycle [more about that in Section 4].

The key word in the last sentence was VARIABLES (also known as PARAMETERS - hence PARAMETRIC PROGRAMMING). These variables can be used in a number of situations for a number of reasons:calculating intersection points on shapes, variable depths, feed-rates etc, transfer of information to and from tool and zero shift tables and so on.

The way we use these variables for various applications is explained, in detail, in this manual. We hope you will benefit from the information (which accompanies the wadkin Parametric Programming Course).

Once you have been on this course we trust that you will have sufficient knowledge and information to program your wadkin CNC router and make it even more cost-effeative than before.

GUIDANCE FOR USE OF THIS MANUAL

Due to the nature and flexibility of parametric programmes, the following points should be noted:-

1. The examples used are rather fictitious and are created as such to explain particular functions.
2. Examples should be followed through logically and with attention to detail.
3. The examples are NOT written to run on a specific machine. Hence, some of the codes required to run on your own machine may not be present for reasons of clarity. It is expected that you will be competent enough with the standard N.C. programming to know where these codes have been omitted.
4. Feedrates and depths of cut (unless otherwise stated) are arbitrary and do not relate to any particular product/material.
5. The VX and VY figures used are also arbitrary.
6. This manual is used as a basis for the 'Wadkin Parametric Programming Course' and not as a substitute for the course.
7. Please note that none of the drawings are to scale. They are only used as diagrammatic representations.
8. Although there are 125 variables available (V1-V99 and VA-VZ) we recommend that you use only V30 - V80 for your programmes. This is because V1 - V30, V81 - V99 and VA - VZ can, in some instances, be used by either Bosch or Wadkin internal cycles and could therefore overwrite values you have used.
9. BASIC PARAMETRIC PROGRAMMES.

In Appendix 1 (BASIC TRIGONOMETRY AND ALGEBRA EXAMPLES) we find simple examples of problems which have been solved using trigonometry and algebra. In engineering and woodworking it is often necessary to perform calculations to determine dimensions for components which are to be machined on computer controlled machinery.

Parts of a similar shape, but different sizes, occur frequently. In these cases the aforementioned calculations become tedious as they have to be repeated, but with different dimensions, for every component.

This is where we see at least one of the benefits of PARAMETRIC PROGRAMMES. We can create programmes, but instead of using real numbers, we can use variables.

Consider example 1.
Example 1

We have to manufacture 3 components of the shape shown above, but with differing sizes:-*

		A	B	C
COMPONENT	1.	50		
COMPONENT	2.	90	30	40
COMPONENT	3.	45	18	60
				32

Consider the following programmes using the normal CNC format to produce the components.

COMPONENT 1

N1	G90				
N2	G53				
N3	G0 Z0 T00				
N4	VX=200	VY=200			
N5	G820				
N6	G0	X-20	Y-20	Z5	T01
N7	G42	T01			
N8	G1	X-10	Y0	F6000	
N9	G1	Z-10	F1500		
*N10	G1	X50	F4000		
*N11		X40	Y25		
N12		X0			
N13			Y-10		
N14	G0	Z5			
N15	G4O	X-20	Y-20		
N16	G53				
N17	G0	X650	Y800	Z0	T00
N18	M30				

COMPONENT 2
G90 G90
G53 G53
GO ZO TOO
$\mathrm{VX}=200 \mathrm{VY}=200$
G820
G0 X-20 Y-20 Z5 T01
G42 T01
G1 X-10 Y0 F6000
G1 Z-10 F1500
G1 X90 F4000

$\mathrm{Y}-10$
G0 $\quad \mathrm{Z} 5$
G40 X-20 $\mathbf{X}-20$
G53
G0 X650 Y800 Z0 T00

COMPONENT 3

GO ZO TOO
$\mathrm{VX}=200 \mathrm{VY}=200$
G820
G0 X-20 Y-20 Z5 T0
G42 T01
G1 X-10 Yo F6000
G1 Z-10 F1500
G1 X45 F4000 X32 Y18 XO
$\mathrm{Y}-10$
G0 Z5
G40 X-20 Y-20
G53
G0 X650 Y800 Z0 T00 M30

Here we have had to produce 3 programmes which are virtually identical. The only differences are in lines N10 and N11.

A way to overcome this is by using parametric programming. Consider the following:

N1	G90			
N2	G53			
N3	G0 Z0 T00			
N4	$\mathrm{VX}=200 \mathrm{VY}=200$			
N5	G820			
N+5	V1=?		$\mathrm{V} 2=$?	$\mathrm{V} 3=$?
N6	G0	X-20	$\mathrm{Y}-20 \mathrm{Z}$	Z5 T01
N7	G42	T01		
N8	GI	X-10	YO F	F6000
N9	GI	Z-10	F1500	
N10	G1	F4000		
$\mathrm{N}+10$		X=V1		
N11		$\mathrm{X}=\mathrm{V} 3$	$\mathrm{Y}=\mathrm{V} 2$	
N12		X0		
N13			Y-10	
N14	G0	Z5		
N15	G40	X-20	Y-20	
N16	G53			
N17	G0	X650	Y800 Z	ZO T00
N18	M30			

This programme has one fundamental difference to the previous 'N.C.' programmes.

Line N+5 contains variables V1, V2 and V3. Into these variable stores we can 'load' a numerical value. This value can relate to the sizes referred to on the component drawing, ie. for component $1, \mathrm{~V} 1=50, \mathrm{~V} 2=25$ and $\mathrm{V} 3=40$.

When the programme is running, as it gets to line $N+5$, the variable stores V1, V2 and V3 will be 'loaded' with the values 50, 25 and 40 respectively. As it gets to line $\mathrm{N}+10$, the X axis will move to the current numerical value of V1 - hence the axis will travel to X50. The same happens in line N11 - the X and Y axes will travel to 40 and 25 respectively Therefore, running the programme completely will produce component 1.

Now, if we change the values of V1, V2 and V3 to say 90, 30 and 60 respectively, and we were to run the programme again, the component produced would be as per component 2.

So we can see that by simply changing the parameter values we get the same shape, but with different sizes.

Try to write a parametric programme (similar to the previous example) for the following shapes. [Suggested answers are in Appendix 3.].

Problem 1

We need to produce 4 components as per the shape above. These are the sizes:-

	A	B
COMPONENT	1	120
COMPONENT 2	180	40
COMPONENT 3	100	80
COMPONENT 4	90	50

Here, we need to produce 3 components. These are the sizes:-

		A	B	C	D
COMPONENT	1	100	25	75	50
COMPONENT 2	200	50	150	100	
COMPONENT 3	300	75	225	150	

2. MORE COMPLEX EXAMPLES

Let us now take this concept one step further. Consider the following example.

Example 2

The object, here, is to formulate a programme ta machine the above shape of component. Notice, though, that we do not have fixed sizes, we have variables.

As we use 'CARTESIAN' coordinates - that is intersection points are determined using an X and Y 'grid' - we need to find all the intersection points with respect to a datum point. Let us use the bottom left hand corner in this case?

To determine all the intersection points for this shape, we need to do some arithmetic and trigonometry. Let us split up the shape into RIGHT ANGLED TRIANGLES.

Points P, Q and S are easy to determine in terms of distance from the datum point. Point R, however needs to be calculated.

To determine V7:-
[* $=$ multiplication sign on CNC control]

$$
\text { SIN } \mathrm{V} 5=\frac{\mathrm{V} 7}{\mathrm{~V} 3} \quad \text { therefore } \mathrm{V} 7=\mathrm{V} 3 * \text { SIN V5 }
$$

To perform this calculation using the CNC control, we have to break it down into single steps; ie:-

$$
\begin{aligned}
& \mathrm{V} 6=\text { SIN V5 } \\
& \mathrm{V} 7=\mathrm{V} 3 * \mathrm{~V} 6
\end{aligned}
$$

[NOTE:- We cannot enter V7 $=$ V3 $*$ SIN V5 on one line as the control does not allow this]

To determine V8:-

$$
V 8=V 7-V 1
$$

To determine V12:-

$$
\begin{aligned}
\mathrm{V} 9 & =\mathrm{V} 8 * V 8 \\
\mathrm{~V} 10 & =\mathrm{V} 2 * \mathrm{~V} 2 \\
\mathrm{~V} 11 & =\mathrm{V} 10-\mathrm{V} 9 \\
\mathrm{~V} 12 & =\mathrm{SQR} \text { V11 }
\end{aligned}
$$

We now have the X and Y co-ordinates of point R. So, all the points can be shown thus:

Let us now write the complete programme incorporating the calculations we have just performed.

N1	G90			
N2	G53			
N3	G0 ZO TOO			
N4	$\mathrm{VX}=200 \mathrm{VY}=200$			
N5	G820			
N6	$\mathrm{V} 1=? \quad \mathrm{~V} 2=? \quad \mathrm{~V} 3=$?	$\mathrm{V} 4=$?	$75=$?	$\mathrm{V} 13=0$
N7	G22 P1			
N8	G0 X-20 Y-20 Z5 T01			
N9	G42 T01			
N10	G1 X-10 Y0 F6000			
N11	G1 Z-10 F1500			
N12	G1 F4000			
N13	$\mathrm{X}=\mathrm{V} 4$			
N14	$\mathrm{X}=\mathrm{V} 12 \quad \mathrm{Y}=\mathrm{V} 7$			
N15	$\mathrm{X}=\mathrm{V} 13 \quad \mathrm{Y}=\mathrm{V1}$			
N16	$\mathrm{Y}-10$			
N17	G0 Z5			
N18	G40 X-20 Y-20			
N19	G53			
N20	G0 X650 Y800 Z0 T00			
N21	M30			
N22	\$1			
N23	$\mathrm{V} 6=$ SIN V5			
N24	$\mathrm{V7}=\mathrm{V} 3$ * V6			
N25	$\mathrm{V} 8=\mathrm{V7}-\mathrm{V} 1$			
N26	$\mathrm{V} 9=\mathrm{V} 8$ * V8			
N27	$\mathrm{V} 10=\mathrm{V} 2 \times \mathrm{V} 2$			
V28	$\mathrm{V} 11=\mathrm{V} 10-\mathrm{V} 9$			
V29	$\mathrm{V} 12=\mathrm{SQR} \mathrm{V11}$			
V30	G99	-		

NOTE 1 - Notice that we have set the value of V13 to 0 . In line N15 we have programmed the machine to go to $\mathrm{X}=\mathrm{V} 13 \mathrm{Y}=\mathrm{V} 1$. The control does not allow us to put the line in thus:- Xo Y=V1, as this would combine normal NC information and parametric information.

NOTE 2 - The use of the sub-programme, $\$ 1$, is purely for clarity and is not a necessity of a parametric programme.

Let us consider a further example.

Example 3

Again, from the above shape we have to calculate the X and Y co-ordinates.

To determine V12:-
Using the formula:-

$$
A^{2}=B^{2}+C^{2}-2 B C \cos A
$$

$$
\begin{aligned}
\mathrm{V} 4 & =\mathrm{V} 1 * \mathrm{~V} 1 \\
\mathrm{~V} 5 & =\mathrm{V} 2 * \mathrm{~V} 2 \\
\mathrm{~V} 6 & =\mathrm{COS} \mathrm{~V} 3 \\
\mathrm{~V} 7 & =\mathrm{V} 1 * \mathrm{~V} 2 \\
\mathrm{~V} 8 & =\mathrm{V} 7 * 2 \\
\mathrm{~V} 9 & =\mathrm{V} 8 * \mathrm{~V} 6 \\
\mathrm{~V} 10 & =\mathrm{V} 4+\mathrm{V} 5 \\
\mathrm{~V} 11 & =\mathrm{V} 10-\mathrm{V} 9 \\
\mathrm{~V} 12 & =\mathrm{SQR} \mathrm{~V} 11
\end{aligned}
$$

Now, we need to determine $\sin \beta: S$
Using the formula:-

$$
\frac{a}{\sin A} \times \frac{b}{\sin B}
$$

$$
\sin B=\frac{\mathrm{V} 1 * \sin \mathrm{~V} 3}{\mathrm{Vi} 2}
$$

Therefore,

$$
\begin{aligned}
\mathrm{V} 13 & =\text { SIN V3 } \\
\mathrm{V} 14 & =\mathrm{V} 1 * \mathrm{~V} 12 \\
\mathrm{~V} 15 & =\mathrm{V} 14 / \mathrm{V} 12 \quad(\sin \beta)
\end{aligned}
$$

To determine V16:-

$$
\mathrm{V} 16=\mathrm{V} 2 * \mathrm{~V} 15
$$

[Because:-

$$
\sin \beta=\frac{\mathrm{V} 16}{\mathrm{~V} 2}
$$

$$
\text { therefore, } \begin{aligned}
\mathrm{V} 16 & =\mathrm{V} 2 * \sin \beta] \\
& =\mathrm{V} 2 * \mathrm{~V} 15
\end{aligned}
$$

To determine V19:-

$$
\mathrm{V} 19=\sqrt{\mathrm{V} 5}-\mathrm{V} 16^{2}
$$

```
therefore, V17 = V16 * V16
    V18 = V5 - V17
    V19 = SQR V18
```

To determine V19:-

$$
\mathrm{V} 20=\mathrm{V} 12-\mathrm{V} 19
$$

This now provides us with all the information necessary:-

| | X | Y |
| :--- | ---: | ---: | ---: |
| POINT P | 0 | 0 |
| POINT Q | V12 | 0 |
| POINT R | V20 | V 16 |

This information could now be incorporated in a programme as we have done before.

You will see from the two previous examples that a considerable amount of thought needs to be given to the initial layout of information and it seems tedious to go through this procedure.

Don't forget, though, that once this programme has been written, all that is necessary to change the size of the component is an alteration to the original 'INPUT' variables. Remember, if we didn't have this facility, cwe would need to perform these calculations EVERY time we changed the shape. This, indeed, could be a lot more tedious!

Again here are some problems for you to try. [The answers are in Appendix 3.]

PROBLEM 3

Write a programme for the above component. The input variables are V1, V2, V3 and V4

Page 2.5

PROBLEM 4

Write a programme to machine this component. Input variable is V1; Angle is always 76 degrees.

PROBLEM 5

Write a programme for the above component. Again input variables are V1, V2 and V3.

PROBLEM 6

The input variable is \widehat{V}.

PROBLEM 7

The previous examples have shown the uses of parametric programmes solely in the areas of arithmetic and trigonometry. Let us now look at some more features of parametric programmes.
3. PARAMETRIC PROGRAMMES INCLUDING JUMPS, COUNTS ETC.

Consider the following situation:-
You have 3 components to manufacture, but of differing thickness say 15,20 and 25 mm .

Conventionally, using normal NC programmes we would have to write three different programmes to machine the components though only the Z axis commands would be different.

Compare the following two programmes which have been written for this shape:-

Example 4

THREE COMPONENTS TO BE MADE OF 15, 20 AND 25 MM THICK MATERIAL.

PROGRAMME A

N1	G90			
N2	G53			
N3	G0 Z0 T00			
N4	VX=200	VY=200		
N5	G820			
N6	G0	X-20	Y-20	Z5
N01				
N7	G42	T01		
N8	G1	X-10	Y0	F6000
N9	G1	Z-16	F1500	
N10	G1	X75	F4000	
N11	G2	X90	Y15	R-15
N12	G1		Y35	
N13	G2	X75	Y50	R-15
N14	G1	X0		
N15			Y-10	
N16	G0	Z5		
N17	G40	X-20	Y-20	

PROGRAMME B

GS3
$\mathrm{VX}=200 \mathrm{VY}=200$
G820
V1=15
G22 P1
G42 T01
G1 X-10 Y0 F6000
Z=VZ
N13 G1 X75 F4000
N14 G2 X90 Y15 R-15
N17 G1 X0
G0 Z5
G40 X-20 Y-20
G53
M30
\$1
G99

Note that in Programme A we have in line N9'Z-16. This tells the machine to go 16 mm into the workpiece - 1 mm below the bottom of a board which is 15 mm thick. To produce the same component out of a board which is 20 mm thick the programme needs to be rewritten or modified.

In Programme B we have in line $N 6$, V1=15. This is the thickness of the board. Immediately after this, in line N7, we call up sub-programme $\$ 1 . \quad T h i s$ adds 1 mm to the thickness of the board and multiplies this number by ' -1 ' to make it a negative number. In line N12 ' Z=VZ' sends the Z axis to the current value of VZ (this being -16 in this case). Now, to produce the same component out of a board which is 20 mm or 25 mm thick we just need to alter $V 1$ at the start of the programme and run it again.

This may not have very much appeal as a practical example because it is very easy in Programme A to modify $Z-16$ to $Z-21$, say. Just as easy, in fact, as modifying $V 1=15$ to $V 1=20$. Not much of a benefit it seems.

Let us consider a further example to try and incorporate parametrics to better effect.

EXAMPLE 9

THIS COMPONENT IS VARIABLE THICKNESS BUT NEEDS TO BE CUT IN 3 PASSES.

N1	G90
N2	G53
N3	G0 ZO TOO
N4	$V \mathrm{~V}=200 \mathrm{VY}=200$
N5	G820
N6	V1= (THICKNESS)
N7	G22 P1
N8	\$2
N9	G0 X-20 Y-20 Z5 T01
N10	G42 T01
N11	G1 X-10 Y0 F6000
N12	G1 F1500
N13	$\mathrm{Z}=\mathrm{VZ}$
N14	G1 X100 F4000
N15	Y40
N16	G2 X70 Y70 R-30
N17	G1 X0
N18	Y-10
N19	G0 Z5
N20	G40 X-20 Y-20
N21	DEC VC
N22	BEQ P99
N23	$\mathrm{VZ}=\mathrm{VZ}-\mathrm{V} 3$
N24	G24 P2
N25	\$99
N26	G53
N27	G0 X450 Y600 Z0 T00
N28	M30
N29	\$1
N30	$\mathrm{V} 2=\mathrm{V} 1+1$
N31	$\mathrm{V} 3=\mathrm{V} 2 / 3$
N32	VZ=V3* -1
N33	$\mathrm{VC}=3$
N34	G99

BRANCHING EXPLANATIONS:-

| BEQ | IF CONDITION REGISTER | $=0$ | JUMP TO $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BLT | IF CONDITION REGISTER | <0 | JUMP TO |
| BGT | IF CONDITION REGISTER | >0 | JUMP TO |
| BLE | IF CONDITION REGISTER | $<=0$ | JUMP TO |

Also,
DEC VC, means DECREMENT VC by the value of 1 - disregard any digits after the decimal point.

Let us try, now, to incorporate a more practical example.

Example 10

AN ELLIPSE

This is quite a common shape in many industries and to produce a 'true' ellipse often causes problems.

Using parametric programming we can overcome this problem 'relatively' easily.

Consider point $P 1$. Using the centre of the shape as the component datum we can calculate the values for X and Y using angle β.

Imagine that the major and minor axes were equal - this infact, would be a circle. To calculate any point on the circumference of a circle we can use the following formulae:-

```
x = r. cos \beta
y =r. sin B
```


Now, this theory can be expanded to calculate points around an ellipse.

EXPLANATION OF FORMULAE FOR

CALCULATION OF POINTS.

Using $\frac{1}{2}$ the major axis as the radius, r, we can use the above formulae. When the Y dimension has been calculated we can then multiply this by the following ratio:-

$$
\frac{\frac{1}{2}}{\frac{1}{2}} \text { minor axis }
$$

This multiplication will then provide us with a reduced Y axis dimension.

If we increase the angle to $\beta 2$, and perform these calculations again we would have found another point P2. This could be continued to find many points around the perimeter of the ellipse.

So, let us try to adopt this theory and put it into practice on the CC 100 M control via parametric programming.

We need to start off with some 'Input' variables. These need to be major axis (V1), minor axis (V2) and incrementing angle (V3).

Page 3.5

First of all the major axis (V1) and minor axis (V2) both need to be halved:-

$$
\begin{aligned}
& \mathrm{V} 4=\mathrm{V} 1 / 2 \\
& \mathrm{~V} 5=\mathrm{V} 2 / 2
\end{aligned}
$$

Now, to calculate the ratio, we need to divide $\frac{1}{2}$ minor axis by $\frac{1}{2}$ major axis.

$$
\mathrm{V} 6=\mathrm{V} 5 / \mathrm{V} 4
$$

Let us start from point, S, and calculate the X and Y co-ordinates.
Remember, $X=r . \cos \beta$

In this case the starting angle, B, is 0 (zero) so we must state this now;

$$
\mathrm{V} 7=0
$$

[Note - This could be stated in the input parameters if required.] So, to perform the calculation we must, find the cosine of $V 7$ and multiply it by $\frac{1}{2}$ the major axis:-

$$
\begin{aligned}
& \mathrm{V} 8=\cos \mathrm{V} 7 \\
& \mathrm{~V} 9=\mathrm{V8} * \mathrm{~V} 4
\end{aligned}
$$

We must now follow a similar method for the Y axis co-ordinate.
Again, $\quad Y=r . \sin \beta$

So, V10 = SIN V7
$\mathrm{V} 11=\mathrm{V} 10 * \mathrm{~V} 4$

As we stated earlier, this must then be multiplied by a ratio to produce a reduced 'Y' axis dimension.

$$
\mathrm{V} 12=\mathrm{V} 11 * \mathrm{~V} 6
$$

So, we have now created an X and Y co-ordinate for point S.
Now the angle must be incremented and we must go through the whole procedure again to calculate point P 1 .

To calculate the new angle we must add the incrementing angle (stated in V3 above) to the angle for which we produced the last X and Y co-ordinates (in this case 0 (zero)).

$$
V 7=V 7+V 3
$$

This now overwrites the existing value of V7 with the new angle. We can now repeat the above calculations to find a new set of X and Y co-ordinates for point P1.

Before we do this, though, we must check to see if we have got to the end of the ellipse.

To produce a full ellipse we must travel through 360°. So, in the same way we stated 0° as our start angle, $V 7,360^{\circ}$ can be stated as our finish angle.

$$
\mathrm{V} 13=360
$$

We must now compare the final angle value, V13, to the current angle value, V7. This can be done in a number of ways but we will use the following method.

$$
\mathrm{V} 14=\mathrm{V} 13-\mathrm{V} 7
$$

This line subtracts the current angle value from the final angle value. If the result of this calculation is greater than zero, ie. if the current angle value is greater than the final angle value, then the ellipse must be complete; if not, then we need to move to the point determined by the new incremented angle (current angle). Therefore the following line can be used in our programme:-

BGE P?

This should produce a jump back to the start of the calculations. If the result of the calculation is greater or equal to zero. The lines after this one will not be effected if this condition is met.

The programme will now repeat itself until it has produced an ellipse.

Let us combine all these lines, now, and write the programme.

```
N1 G90
N2 G53
N3 GO ZO TOO
N4 VX=400 VY=300
N5 G820
N6 V1=300 V2=180 V3=2
N7 G0 X170 Y-40 Z5 T01
N8 G42 T01
N9 G1 X150 Y-20 F6000
N10 G1 Z-10 F1500
N11 G1 YO F4000
N12 G22 P1
N13 G1 Y20
N14 GO Z5
N15 G40 X170 Y40
N16 G53
N17 G0 X450 Y600 Z0 T00
N18 M30
N19 $1
N20 V4=V1/2 V5=V2/2
N21 V6=V5/V4
N22 V7=0 V13=360
N23 $2
N24 V8=COS V7
N25 V9=V8*V4
N26 V10=SIN V7
N27 V11=V10*V4
N28 V12=V11*V6
N29 X=V9 Y=V12 [NOTE 1.]
N30 V7=V7+V3
N31 V14=V13-V7
N32 BGE P2
N33 G99
```

[NOTE 1] Because we are only moving a short distance we use a straight line movement, rather than a curve. Once the whole ellipse is produced the straight line is not usually noticeable (providing the incrementing angle (V3) - which determines the length of the straight line - is small enough).

It can be said, though, that the programme is still a little bit limited. Lines N7, N9, N10 and N15 all move to positions which are not totally flexible ie. not universal for any size of ellipse.

We can modify this programme still further to make it more flexible.

```
N1، G90
N2 G53
N3 GO ZO TOO
N4 VX=400 VY=300
N5 G820
N6 V1=300 V2=180 V3=2 V18=DEPTH
N7 G22 P1
N8 G0 TO1
N9 X=V19 Y=V21 Z=V17
N10 G42 T01
N11 Gl F6000
N12 X=V4 Y=V20
N13 F1500
N14 Z=V22
N15 G1 F4000
N16 G22 P2
N17 X=V4 Y=15
N18 G0 Z5
N19 G40
N20 X=V19 Y=V16
N21 G53
N22 G0 X450 Y600 ZO T00
N23 M30
N24 $1
N25 V4=V1/2
N26 V5=V2/2
N27 V6=V5/V4
N28 V7=0 V13=360 V15=20
N29 V16=40 V17=5
N30 V19=V4+V15
N31 V20=V15* -1
N32 V21=V16* -1
N33 V22=V18* -1
N34 G99
N35 $2
N36 V8=COS V7
N37 V9=V8*V4
N38 V10=SIN V7
N39 V1I=V10*V4
N40 V12=V11*V6
N41 X=V9 Y=V12
N42 V7=V7+V3
N43 V14=V13-V7
N44 BGE P2
N45 G99
```

With this example we have changed the format around slightly and added one or two functions in.

As you can see, sub-programme 1 is called up straight after the input parameters are loaded (N7). This sub-programme now calculates the ratio and some values which are used as points for 'entry' and 'exit' moves into and out of the ellipse.

Point 1 is 20 mm away from the edge of the ellipse and 40 mm below Yo. From this point we can move to point 2 putting on cutter compensation. [This distance should be large enough for cutters up to about 27 mm radius].

At point 2 the cutter is positioned to the cutting depth.
The machine now runs through sub-programme 2 numerous times and completes the ellipse. At this stage the machine is positioned at point 4, the cutter raised and the cutter compensation taken off between points 4 and 5

This programme will now work for any size of ellipse.

Now that we have tried one practical example, let us try another one which is very popular in the woodworking industry.

Example 11

RAISED AND FIELDED KITCHEN PANEL

These are the 6 basic input variables used to calculate the points for the panel. These may be measured off an existing panel.

The numbers in circles denote the points for which we need to calculate X and Y co-ordinates. In actual fact, points (1), (2), (3), (4), (7) and (8) pose no real problem. It is only points (5) and (6) which are relatively difficult to determine.

We do this using the 'similar triangles' principle. You will see how this works as we go through the calculations.

PICTORIAL RERRESENTATION OF CALCULATION PARAMETERS

First we need to calculate the sides of the triangle V11, V13, V14. This we can do by means of simple addition, subtraction and division.

```
V10 = V1/2
V11 = V10- V6
V12 = V2 - V5
V13 = V12+ V3
V14 = V4 + V3
```

Now, we can say that all three sides have a certain relationship with each other. Taking this into account, we can determine two ratios:-

$$
\begin{aligned}
& \mathrm{V} 15=\mathrm{V} 11 / \mathrm{V} 14 \\
& \mathrm{~V} 16=\mathrm{V} 13 / \mathrm{V} 14
\end{aligned}
$$

This means now that if we use these ratios, we can calculate V17 and V18.

$$
\begin{aligned}
& \mathrm{V} 17=\mathrm{V} 4 * V 15 \\
& \mathrm{~V} 18=\mathrm{V} 4 * V 16
\end{aligned}
$$

Now that we have found these two values, it is again a matter of simple arithmetic to determine all the co-ordinates for the panel.

$$
\begin{aligned}
& \mathrm{V} 19=\mathrm{V} 1-\mathrm{V} 6 \\
& \mathrm{~V} 20=\mathrm{V} 10+\mathrm{V} 17 \\
& \mathrm{~V} 21=\mathrm{V}+\mathrm{V} 18 \\
& \mathrm{~V} 22=\mathrm{V} 10-\mathrm{V} 17
\end{aligned}
$$

Let us combine all these calculations in a programme for the CC 100M control. [NOTE:- It is very important to get the correct values in the input parameters - particularly V3 and V4, otherwise it will not produce the correct size panel].

N25 G0 Z5
N26 G40 X-20 Y-70
N27 G53
N28 G0 X450 Y600 Z0 T00
N29 M30
N30 \$1
N31 V10=V1/2
N32 V11=V10-V6
N33 V12=V2-V5
N34 V13=V12+V3
N35 V14 =V4+V3
N36 V15=V11/V14
N37 V16=V13/V14
N38 V17 $=\mathrm{V} 4 * V 15$
N39 V18=V4*V16
N40 V19=V1-V6
N41 V20=V10+V17
N42 V21=V5+V18
N43 V22=V10-V17
N44 V3=V3* - I
N45 V4=V4* -1
N46 G99

Example 12

As with some previous examples, this programme is not very versatile; it will only go round the component one way (anti-clockwise), at one depth and one feedrate.

The following programme is based on the same principles, though it is rather more flexible.

With this example, we can also use a variable for the feed, a variable for the depth of cut and a variable to control which way round we cut - either conventionally (anti-clockwise around the component) or climb dutting (clockwise around the component).

NI	G90	$\mathrm{VF}=\mathrm{Fe}$	in mm/min, eg	4000
N2	G53	$\mathrm{VZ}=\mathrm{Dep}$	h of cut in mm,	eg. -20
N3	GO ZO T00		lude the minus	sign).
N4	$\mathrm{VX}=200 \mathrm{VY}=200$			
N5	G820			
N6	$\mathrm{V} 1=300 \mathrm{~V} 2=460 \quad \mathrm{~V} 3=80$			
N7	$V 4=163 \quad V 5=330 \quad V 6=28$			
N8	$\mathrm{VF}=\mathrm{FEED} \quad \mathrm{VZ}=\mathrm{DEPTH}$ OF			
N+8	$\mathrm{VC}=1$ (FOR CLIMB CUT) OR	CONVENT	NAL CUT)	
N9	G22 P1			
N10	G53			
N11	G0 X450 Y600 Z0 T00			
N12	M30			
N13	\$1			
N14	G22 P2			
N15	V24=1			
N16	$\mathrm{V} 25=\mathrm{V} 24-\mathrm{V}$			
N17	BEQ P3			
N18	G0 X-80 Y-70 Z5 T01			
N19	G42 T01			
N20	G1 X-50 Y0 F6000			
N21	G1 F1500			
N22	$\mathrm{Z}=\mathrm{VZ}$			
N23	$\mathrm{X}=\mathrm{V1} \mathrm{~F}=\mathrm{VF}$			
N24	$\mathrm{Y}=\mathrm{V} 2$			
N25	X $=$ V19	1		
N26	G2			
N27	$\mathrm{X}=\mathrm{V} 20 \mathrm{Y}=\mathrm{V} 21 \mathrm{R}=\mathrm{V} 3$			
N28	G3			
N29	$\mathrm{X}=\mathrm{V} 22 \mathrm{Y}=\mathrm{V} 21 \mathrm{R}=\mathrm{V} 4$			
N30	G2			
N31	$\mathrm{X}=\mathrm{V} 6 \quad \mathrm{Y}=\mathrm{V} 2 \quad \mathrm{R}=\mathrm{V} 3$			
N32	G1 X0			
N33	$\mathrm{Y}-50$			
N34	G0 Z5			
N35	$\mathrm{G} 40 \mathrm{X}-20 \mathrm{Y}-70$	N55	G0 Z 5	
N36	G99	N56	G40 X-70 Y-20	
N37	\$3	N57	G99	
N38	G0 X-20 Y-70 Z5 T01	N58	\$2	
N39	G41 T01	N59	V10=V1/2	
N40	G1 X0 Y-50 F6000	N60	V11=V10-V6	
N41	G1 F1500	N61	N12=V2-V5	
N42	$\mathrm{Z}=\mathrm{VZ}$	N62	$\mathrm{V} 13=\mathrm{V} 12+\mathrm{V} 3$	
N43	$\mathrm{Y}=\mathrm{V} 2 \quad \mathrm{~F}=\mathrm{VF}$	N63	$\mathrm{V} 14=\mathrm{V} 4+\mathrm{V} 3$	
N44	$\mathrm{X}=\mathrm{V} 6$	N64	$\mathrm{V} 15=\mathrm{V} 11 / \mathrm{V} 14$	
N45	G3	N65	V16=V13/V14	
N4 6	$\mathrm{X}=\mathrm{V} 22 \mathrm{Y}=\mathrm{V} 21 \quad \mathrm{~F}=\mathrm{V} 4$	N66	$\mathrm{V} 17=\mathrm{V} 4 * \mathrm{~V} 15$	
N47	G2	N67	$\mathrm{V} 18=\mathrm{V} 4 * \mathrm{~V} 16$	
N48	$\mathrm{X}=\mathrm{V} 20$ Y=V21 R=V3	N68	V19 = V1-V6	
N49	G3	N69	$\mathrm{V} 20=\mathrm{V} 10+\mathrm{V} 17$	
N50	$\mathrm{X}=\mathrm{V} 19 \quad \mathrm{Y}=\mathrm{V} 2 \quad \mathrm{R}=\mathrm{V} 4$	N70	$\mathrm{V} 21=\mathrm{V} 5+\mathrm{V} 18$	
N51	G1	N71	$\mathrm{V} 22=\mathrm{V} 10-\mathrm{V} 17$	
N52	$\mathrm{X}=\mathrm{V} 1$	N72	V4=V4* -1	
N53	YO	N73	$\mathrm{V} 4=\mathrm{V} 4 *-1$	
N54	$\mathrm{X}-50$	N74	G99	

PROBLEM 8

$\mathrm{V} 10=$ Input variable - (length of component (MUST BE MULTIPLE OF 50))
(a) Write programme to produce series of slots - all at 50 mm pitches (from q to G_{t}). Programme must determine correct number of slots.
(b) As (a) but incorporate a chedk which terminates the programme if V10 is not a multiple of 50 (and displays an error message).

PROBLEM 9

V25 $=$ NO. OF HOLES

Write a programme to drill a series of holes in a panel. The holes are along a straight line which may rotate through an angle - V26. The programme must halt if faulty data is input ie:- The board not being long enough or wide enough to accept the number of holes or the angle being more than 90°.

4. FURTHER USE OF PARAMETRIC FUNCTIONS

As mentioned in the introduction, you have been using vx and Vy values from 'Day 1'. We will now explain how these values are dealt with and the corresponding effect.

Example 13

Before we explain in detail the use of the offset cycles, it may be useful for us to review some basic N.C. programming first.

ZERO SHIFTS

We have 6 zero shifts available - G54 through to G59. These are used to 'locate' a component datum on the table. [G53 cancels any active zero shift value].

Consider this:-

To set the component datum asing zero shifts, we need to store the X and Y values in the zero shift store. For this example we will put these in the G54 store This is done before the programme is first run (during the 'setting-Up' of the machine).

Now, if we want to move to a point relative to the component datum, we just call up G54 in our programme. This transfers the active datum to the position which is stored in the zero shift table under G54.
ie. G90 Machine datum is active datum till here
 etc. now active datum. (ie. X340 Y265 is now treated as X0 YO)
[To cancel any active zero shift use G53] G53 Go X450 Y600 zo T00 M30

Now, if we have a number of heads on the machine (indeed, this is very common) careful consideration has to be made of how we set the datum points.

For example, on a CC 2000 machine with one router head and 2 drills, we have the following head centres:-

Let us transpose the head centres drawing onto the previous diagram for the zero shifts.

Now, in this situation, we have the router head positioned over the component datum. This is at X340 Y265.

If we now move the left drill, A, over the datum point we have to move an extra 160 mm (away from XO). This reading would then be X500 Y265.

In turn, if we move the right hand drill head, B, over the datum point we have to move back 160 mm . This would be X180 Y265.

So, if we want to use both drills and the router head, we need to use 3 zero shifts.

These would have the values:-

G54	X340	Y265	- Router head
G55	X500	Y265	- Drill head A
G56	X180	Y265	- Drill head B

As previously mentioned, we only have six zero shift stores. If we wanted to cut more than two components or we had more heads on the machine, we would have a severe limitation due to the number of zero shift stores available.

Another problem occurs in that we have to calculate the X values of the latter 2 zero shifts (for the drills) using the distances between the drills and the router head.

This all appears very complex, long winded and limited in its scope.

AUTO-OFFSET CYCLES

To overcome this, Wadkin have written an 'AUTO-OFFSET CYCLE'. The benefits of this are:-

1. We only need to state a datum point once per component (using VX and VY).
2. We state this datum point in the programme (not zero shift store)
3. We don't have to do any calculations.
4. We can do many components just be re-stating a new VX and Vy point within our programme.

Let us now consider how we use the AUTO-OFFSET CYCLE and how it works.

In any programme we typically use lines at the start such as:-
N1 G90
N2 G53
N3 GO ZO TOO
N4 $V X=340 \quad V Y=265$
N5 G820
etc.
Here, we note that in line $N 4$ we state the VX and VY values and immediately after this (in line N5) we put G820.

Further on in the programme, should we want to use the left drill, A, we would programme $G 821$ and in if we wanted to use the right drill, B, we would programme G822.

The G820 cycle is the key to all this. Remember, cycles are used in a similar way to sub-programmes, but they are global (or universal) which means the same cycle can be called up by any programme.

Let us look at a typical $G 820$ cycle for a CC2000 machine with 2 drills.
[NOTE - Your machine's cycle 20 may look different to this, but the principle is the same].

N1	G53
N2	V20 $=-160 \quad$ V2 $1=160$
N3	V22 $=\mathrm{VX}-\mathrm{V} 20$
N4	V23 $=\mathrm{VX}-\mathrm{V} 21$
N5	TRF=G54 X=VX $\quad \mathrm{Y}=\mathrm{VY}$
N6	TRF=G55 X=V22 $\mathrm{Y}=\mathrm{VY}$
N7	TRF=G56 X=V23 Y=VY
N8	G54
N9	M2

We will now consider this cycle line by line.

N1 G53 - As you know, this cancels any active zero shifts (just to make sure there are none left active by mistake).

N2 V20=-160 V21=160 - This line stores the distances between the router head and the drill heads. [these are put in at Wadkin Colne after measuring the exact distances].

N3 $\mathrm{V} 22=\mathrm{VX}-\mathrm{V} 20$

- This subtracts the current value of VX (which, remember, was stated in the programme) from the value stored in V20 (above). Using the previous example this would be 340 - $(-160)=500$ [Note:- Subtracting a minus value gives a positve result].

So, we see that once the cycle G820 has been performed, G54, G55 and G56 are loaded with values for the router head, drill head A and drill head B respectively.

G821, G822 are very simple cycles, as follows.
CYCLE 21
CYCLE 22

N1	G53	N1	G53
N2	G55	N2	G56
N3	M2	N3	M2

This means that if we were to call up G821, N1 would cancel any active zero shift, N2 would call up G55 and then end the cycle. This now means any point programmed is in respect of the left drill being set to the component datum. Its a similar situation when we call up G822.

The function which allows such a cycle to work is the transfer function - TRF. This is only one of the uses $\mathrm{Qf}^{\text {f }}$ this function, ie. loading values into the zero shift store. Here is a brief explanation of the other uses, along with some other functions.
[NOTE:- The functions described here are not used as commonly as those previously considered. They are only used in more specific cases. Once the following functions are understood, they can be used wherever it is felt necessary]

COPYING VALUES FROM A ZERO SHIFP TABLE:-
This line :-

```
        TRF=G54 V1=X V2=Y
```

Would copy the X and values out of the $G 54$ zero shift store. These values would be loaded into V1 and V2 respectively. (The values actually remain, in the zero shift store and are not deleted).

These values would be used, then, for further calculations or merely for storage somewhere else.
[NOTE:- V1 and V2 could, in fact, be any variable. Also, G54 could be any zero shift store; G54 -G59].

COPYING G92 ZERO SHIFT :-
Rather similar to the last example.
TRF=G92 V1=X V2=Y
This would transfer the active X and Y datum (which must have been set using a G92 value, rather than a zero shift (eg. G54) value to V1 and V2 respectively.

Again, the reasons for doing this are numerous and varied. (Also, similar to before, the current G92 active values are not deleted, just copied).

An active pole is set when using polar co-ordinates. It is the centre about which points are defined using an angle and a distance from the centre point (instead of using X^{\prime} s and $Y^{\prime} s$).

To copy the centre point values we would programme the following line: -

TRF=G20 V1=X V2=Y
This would, similar to before, load the X value into $V 1$ and Y value into V2.

LOADING VALUES INTO THE TOOL STORE
This is a similar principle to loading values into the zero shift store.

Here, we use the function COR - as below.

$$
\begin{aligned}
C O R=T 01 ~ R=V 1 ~ L=V 2 ~ & (T 01 \text { could be any tool number, V1 and } \\
& V 2 \text { could be variable number). }
\end{aligned}
$$

This will put the current value of $W 1$ into the tool radius compensation store for TOl, overwriting any existing value. At the same time it will also put the current value of V2 into the tool length compensation store for Tol, again overwriting any existing value.

This is a very useful function insome circumstances.
COPYING VALUES FROM THE TOOL STORE
This has the opposite effect to the last function.
COR=TO1 V1=R V2=T (T01 could by any tool number, V1 and V2 could be any variable number).

This will put the current radius value of T01 into variable V1 and put the current length of T01 into variable V2. Again, note that the tool store values are not deleted, just copied from the store.

This function and the last function work quite will together in some circumstances.

For example, if it is required to take a finishing cut on a component, we can use the following method.

1. Run sub-programme (or cycle) which
[SUB-PROGRAMME] contains information for contouring the shape; ('roughing out' the shape)
2. Transfer active tool number into V50
3. Transer current radius of tool into V51
4. Size of finishing cut (0.1mm off, for eg., all round component).
5. Subtract 'size of finishing cut' from
radius compensation value of cutter
6. Load new radius back into tool store
7. Run sub-programme again - this time it will take a further 0.1 mm of all round
$\mathrm{V} 50=\mathrm{T}$
$\mathrm{COR}=\mathrm{V} 50 \mathrm{~V} 51=\mathrm{R}$
$\mathrm{V} 52=0.1$

V53=V51-V52
$C O R=V 50 \quad \mathrm{R}=\mathrm{V} 53$
[SUB-PROGRAMME]
[Note:- This may need further adaptation to run on your machine and with your particular components but it highlights a principle which can be put to practical use].

TIME FUNCTION
TIM V1 (V1 could be any variable)
This function allows us to record the time from pressing the cycle start button. (TIME IN SECONDS).

This can be used to time a whole cycle, or part of a cycle.
If we want to time the whole cycle, we could put:-

TIM VT

for example, just before the M30. This woul load the cycle time into variable VT.

If, on the other hand, we wanted to time a particular part of the cycle, we would use the function at the start and finish of the relevant part of the cycle and subtract the two times.

An example will help to clarify this point:-

G90
G53
GO ZO T00
$\mathrm{VX}=200 \mathrm{VY}=200$
G820
M8 T01
G22 P1
M9
G0 Z5 T02
M68
G823
TIM VR
G22 P1
TIM VS
G53
G0 X650 Y800 Z0 T00 M69
VT=Vs-VR (*)
M30
\$1
G0 X-20 Y-20 Z5
G42
G1 X-10 Y0 F6000
G1 Z-10 F1500
G1 X200 F4500
Y200
X0
Y-10
G0 Z 5
G40 X-20 Y-20
G99
(*) VT will now be loaded with the time taken to complete sub-programme $\$ 1$ for the second time.

APPENDIX 1
 WADKIN (COLNE) PLC

PARAMETRIC PROGRAMMING COURSE FORMULA SHEET

FOR RIGHT ANGLE TRIANGLES:-

ADJ = ADJACENT
HYP= HYPOTENUSE
OPP $=$ OPPOSITE

$$
\text { TAN } \beta=\frac{\mathrm{OPP}}{\mathrm{ADJ}} \quad \operatorname{SIN} \beta=\frac{\mathrm{OPP}}{\mathrm{HYP}} \quad \operatorname{COS} \beta=\frac{\mathrm{ADJ}}{\mathrm{HYP}}
$$

$$
C^{2}=A^{2}+B^{2}
$$

FOR ANY TRIANGLE:-

SINE RULE:-

$$
\frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin c}
$$

COSINE RULE:- $\quad A^{2}=B^{2}+C^{2}-2 B C \cos a$

Transposed gives:-

$$
\overline{\cos a}=\underline{B}^{2}+C^{2}-A^{2}
$$

Also, all angles of a triangle $=180^{\circ}$

$$
\operatorname{Tan} \beta=\frac{\sin \beta}{\cos \beta} \quad \sin ^{2} \beta+\cos ^{2} \beta=1
$$

Page Al. 1

APPENDIX 2

1. BASIC TRIGONOMETRY AND ALGEBRA EXAMPLES

Example 1

Example 2

$\operatorname{Tan} \beta=\frac{O P P}{A D J}$
$\operatorname{Tan} 23^{\circ}=\frac{35}{A}$
$A=\frac{35}{\operatorname{Tan} 23^{\circ}}=\frac{35}{0.4245}$
$A=84.45 \mathrm{~mm}$

To determine length C:$C^{2}=A^{2}+B^{2}$
$=82.45^{2}+35^{2}$
$=8023$
$C=\sqrt{8023}$
$\mathrm{C}=89.57 \mathrm{~mm}$

Page A2. 1

(i) To determine angle 'a':-

> Using formula:- $\frac{\mathrm{A}}{\operatorname{Sin} \mathrm{a}}=\frac{\mathrm{B}}{\operatorname{Sin} \mathrm{b}} \quad$ (SINE RULE)

$$
\frac{32}{\sin ^{\prime} a^{\prime}}=\frac{47}{\sin 46^{\circ}} \quad \sin ^{\prime} a^{\prime}=\frac{32 \sin 46^{\circ}}{47} \quad=0.4898
$$

$$
\sin ' a \prime=0.4898
$$

$$
\prime a^{\prime}=29.325^{\circ}(i i)
$$

(ii) To determine angle β :-

Sum of angles of a triangle $=180^{\circ}$

$$
\text { therefore } \quad B=180^{\circ}-\left(46^{\circ}+29.325^{\circ}\right)
$$

To determine angle B :-
Using formula:-

$$
\begin{aligned}
\cos B & =\underline{B}^{\frac{2}{2}+C^{2}-A^{2}} \\
\cos B & \left.=\frac{57}{C} \frac{2}{(2 \times 57} \frac{46}{2}-68 \frac{2}{46}\right) \\
& =\frac{741}{5244}=0.1413 \\
B & =\cos ^{-1} 0.1413 \\
& =81.877^{\circ}
\end{aligned}
$$

APPENDIX 3

SUGGESTED ANSWERS TO PROBLEMS

PROBLEM 1

N1	G90		
N2	G53		
N3	G0 Z0 T00		
N4	$V \mathrm{~V}=200 \mathrm{VY}=200$		
N5	G820		
N6	$\mathrm{V} 1=(\mathrm{A}) \quad \mathrm{V} 2=(\mathrm{B})$		
N7	G0	X-20	$\mathrm{Y}-20 \mathrm{Z} 5 \mathrm{~T} 01$
N8	G42	T01	
N9	G1	X-10	Yo F6000
N10	G1	Z-10	F1500
N11	G1	F4000	
N12		$\mathrm{X}=\mathrm{V} 1$	
N13			$\mathrm{Y}=\mathrm{V} 2$
N14		X0	
N15			Y-10
N16	G0	Z 5	
N17	G40	X-20	Y-20
N18	G53		
N19	G0	X650	Y800 Z0 T00
N20	M30		

To run this programme to produce component 1 , we would put a value of 120 in V1 and 40 in V2. When this programme is executed it will load V1 and V2, then in lines 12 and 13 it will move to the loaded values ie. $X=120$ $\mathrm{Y}=40$

To produce components 2,3 and 4 we would just change V1 and V2

PROBLEM 2

Again, we have a similar principle to the last last problem.

PROBLEM 3

N1 G90
N2 G53
N3 GO ZO TOO
N4 VX=200 VY=200
N5 G820
N6
N7
N8
N9
N10
NII
N12
N13
N14
N15
N16
N17
N18
$\mathrm{V} 1=$? $\mathrm{V} 2=$? $\mathrm{V} 3=$? $\mathrm{V} 4=$?
GO X-20 Y-20 Z5 TOI
G42 T01
G1 X-10 Y0 F5000
G1 Z-10 F1500
G1 F4000
$\mathrm{X}=\mathrm{V} 1$
$\mathrm{Y}=\mathrm{V} 3$
$\mathrm{V} 5=\mathrm{V} 1-\mathrm{V} 4$
$\mathrm{X}=\mathrm{V} 5$
$\mathrm{V} 6=0$
$\mathrm{X}=\mathrm{V} 6 \quad \mathrm{Y}=\mathrm{V} 2$

N19 G0 Z5
N20 G40 X-20 Y-20
N21 G53
N22 G0 X450 Y600 Z0 T00
N23 M30

PROBLEM 4

```
N1 G90
N2 G53
N3 GO ZO TO
N4 VX=200 VY=200
N5 G820
N6 V1=?
N7 G22 P1
N8 G0 X-20 Y-20 Z5 T01
N9 G42 T01
N10 Gl X-10 Y0 F6000
N11 G1 Z-10 F1500
N12 G1 F4000
N13 X=V6
N14 X=V7 Y=V1
N15 Y-10
N16 G0 Z5
N17 G40 X-20 Y-20
N18 G53
N19 G0 X450 Y600 Z0 T00
N20 M30
N21 $1
N22 V2=76
N23 V3=SIN V2
N24 V4=COS V2
N25 V5=V3/V4
N26 V6=V1/V5
N27 V7=0
N28 G99
```

NOTE:- There is no TANGENT function on the control. This is overcome using the following formula:-

```
TAN B = SIN }
```


PROBLEM 5

N1	G90
N2	G53
N3	G0 Z0 T00
N4	$V X=200 \quad \mathrm{VY}=200$
N5	G820
N6	$\mathrm{V} 1=$? $\mathrm{V} 2=$? $\mathrm{V} 3=$?
N7	G22 P1
N8	G0 X-20 Y-20 Z5 T01
N9	G42 T01
N10	G1 X-10 Y0 F5000
N11	G1 Z-10 F1500
N12	G1 F4000
N13	$\mathrm{X}=\mathrm{V} 1$
N14	$\mathrm{X}=\mathrm{V} 3 \quad \mathrm{Y}=\mathrm{V} 9$
N15	$\mathrm{Y}=\mathrm{V} 10$
N16	$\mathrm{X}=\mathrm{V} 11$
N17	Y-10
N18	G0 Z5
N19	G40 X-20 Y-20
N20	G53
N21	G0 X450 Y600 Z0 T00
N22	M3 0
N23	\$1
N24	V4 $=\mathrm{V} 3-\mathrm{V} 1$
N25	$V 5=40$
N26	V6=SIN V5
N27	$\mathrm{V7}=\mathrm{COS}$ V5
N28	$\mathrm{V} 8=\mathrm{V} 6 / \mathrm{V} 7$
N29	$\mathrm{V} 9=\mathrm{V} 4 * \mathrm{~V} 8$
N30	$\mathrm{V} 10=\mathrm{V} 2+\mathrm{V} 9$
N31	V11 $=0$
N32	G99

PROBLEM 6

```
N1 G90
N2 G53
N3 GO ZO TOO
N4
N5
N6
N7
N8 G0 X-20 Y-20 Z5 T01
N9 G42 T01
N10 G1 X-10 Y0 F6000
N11 G1 Z-10 F1500
N12 G1 F4000
N13 X=V1
N14 Y=V3
N15 X=V7 Y=V9
N16 X=V10 Y=V3
N17 Y-10
N18 G0 Z5
N19 G40 X-20 Y-20
N2O G53
N21 G0 X450 Y600 ZO T00
N22 M30
N23 $1
N24 V2=40 V3=50
N25 V4=SIN V2
N26 V5=COS V2
N27 V6=V4/V5
N28 V7=V1/2
N29 V8=V6*V7
N30 V9 =V8+V3
N31 V10=0
N32 G99
```


PROBLEM 7

```
N1 G90
N2 G53
N3 G0 ZO T00
N4 VX=200 VY=200
N5 G820
N6 V1=? V2=? V3=?
N7 G22 P1
N8 G0 X-20 Y-20 Z5 T01
N9 G42 T01
N10 G1 X-10 Y0 F5000
N11 G1 Z-10 F1500
N12 G1 XO F4000
N13 G91
N14
N15
N16
N17
N18
N19
N20
N21
N2
N23
N24 G0 T5
N25 G40 X-20 Y-20
N26 G53
N27 G0 X450 Y600 Z0 T00
N28 M30
N29 $1
N30 V4=V3/V4
N31 V5=30
N32 V6=SIN V5
N33 V7=COS V5
N34 V8=V6/V7
N35 V9=V4*V8
N36 V10=V4*-1
N37 V11=V9*-1
N38 V12=V2*-1
V39 G99
```


PROBLEM 8

(a)

N1 G90
N2 G53
N3 G0 ZO TOO
N4 VX=200 VY=20
N5 G820
N6 V10 = (LENGTH)
N7 G22 P1
N8 G0 X42.5 Y50 Z5 T01
N9 \$2
N10 G22 P3
N11 DEC V6
N12 BEQ P99
N13 G91
N14 G0 X35
N15 G90
N16 G24 P2
N17 \$99
N18 G53
N19 G0 X450 Y600 Z0 T00
N20 M30
N21 \$1
$\mathrm{N} 22 \mathrm{~V} 2=50$
N23 V3 $=\mathrm{V} 2$ *2
N24 V4=V10-V3
N25 V5 $=\mathrm{V} 4 / 50$
N26 V6 $6=\mathrm{V} 5+1$
N27 G99
N28 \$3
N29 G61
N30 G91
N31 G1 Z-10 F1500
N32 X15 F3000
N33 G0 Z10
N34 G62
N35 G90
N36 G99

PROBLEM 8

(b)

N1 G90
N2 G53
N3 GO ZO TOO
N4
$\mathrm{VX}=200$ VY=200 (BOTTOM LEFT HAND CORNER)
G820
N
V10 $=$ (LENGTH)
G22 P1
G0 X42.5 Y50 Z5 T01
N9
\$2
N10 G22 P3
N11 DEC V6
N12 BEQ P99
N13 G91
N14 G0 X35
N15 G90
N16 G24 P2
N17 \$99
N18 G53
N19 G0 X450 Y600 Z0 T00
N20 M30
N21 \$1
N22 V11=V10/50
N23 V12=V11
N24 INC V12
N25 DEC V12
N26 V13=V11-V12
N27 BNE P98
N28 V2 $=50$
N29 V3 29 V2*2
N30 V4 $=\mathrm{V} 10-\mathrm{V} 3$
N31 V5 $=V 4 / 50$
N32 V6=V5+1
N33 G99
N34 \$3
N35 G61
N36
N37
N
N39
G1 Z-10 F1500
X15 F3000
GO
Z10

N40 G90
N41 G99
N42 \$98
N43 M0
N44 (INPUT VARIABLE IS NOT A MULTIPLE OF 50 - ENTER NEW VALUE OF V10) N45 G24 P98

PROBLEM 9

```
N1 G90
N2 G53
N3 GO ZO TOO
N4 VX=200 VY=200 (BOTTOM LEFT HAND CORNER)
N5 G820
N6 V20=? V21=? V22=? V23=?
N7 V24=? V25=? V26=?
N8 G22 P1
N9 G=V19 X=V23 Y=V22
N10 G81 V1=5 V2=-10
N11 G1 F800 T01 M20
N12 G0 X=V23 Y=V22
N13 G=V30 P=V31 L=V32
N14 G80
N15 G53
N16 G0 X450 Y600 Z0 T00 M38
N17 M30
N18 $1
N19 V10=V25*V24
N20 V11=SIN V26 V12=COS V26
N21 V13=V10*V12 V14=V10*V11
N22 V15=V23+V13
N23 V16=V22+V14
N24 V17=V20-V15 BLE P99
N25 V18=V21-V16 BLE P98
N26 V19=20 V3O=22 V31=2
N27 V32=V25-2
N28 V33=V26-90 BGT P97
N29 G99
N30 $2
N31 G91
N32 A=V26 D=V24
N33 G90
N34 G99
N35 $99
N36 MO
N37 (BOARD IS NOT &ONG ENOUGH TO ACCEPT THIS NO. OF HOLES)
N38 G24 P99
N39 $98
N40 MO
N41 (BOARD IS NOT WIDE ENOUGH TO ACCEPT THIS NO. OF HOLES)
N42 G24 P98
N43 $97
N44 MO
N45 (ANGLE IS LARGER THAN 90 DEGREES)
N46 G24 P98
```


APPENDIX 4

PARAMETRIC PROGRAMMING COURSE
 QUICK REFERENCE LIST

STATEMENT
$\mathrm{V} 1=\mathrm{n}$
$\mathrm{X}=\mathrm{Vn} \quad[\mathrm{m}=\mathrm{Vn}]$
$\mathrm{Vn}=\mathrm{X} \quad[\mathrm{Vn}=\mathrm{p}]$
$\mathrm{VI}=\mathrm{V} 2$
$\mathrm{V} 1=\mathrm{V} 2+\mathrm{V} 3 \quad(\mathrm{~V} 1=\mathrm{V} 2+10)$
$\mathrm{V} 1=\mathrm{V} 2-\mathrm{V} 3$ ($\mathrm{V} 1=\mathrm{V} 2-10$)
$\mathrm{V} 1=\mathrm{V} 2 * \mathrm{~V} 3$ ($\mathrm{V} 1=\mathrm{V} 2 * 10$) and
$\mathrm{V} 1=\mathrm{V} 2 / \mathrm{V} 3$ (V1=V2/3)

V1=SQR V2

VI=SIN V2
$\mathrm{VI}=\operatorname{COS} \mathrm{V} 2$

V1 (degrees) =ATN V2
INC V1

DEC V1

BEQ P5 [BEQ V1]

BNE P5 [BNE V1]

FUNCTION
LOAD a numerical value into a variable store. (V1 can be anything from V1 - V99 \& VA - VZ)

EXECUTION instruction - N.C. addresses are loaded from variable stroe $[\mathrm{m}$ can be any one of the following addresses X, Y, Z, E, I, J, K, A, D, G, F, R, S, T, M, H]

TRANSFER active data into variable store [p can be any of the following addresses $X, Y, Z, E, I, J, K, A, D, F, R, S, T]$

COPY value from one variable into another variable.

ADDITION of two variables or a variable and an integer.

SUBTRACTION of two variables or a variable and in integer.

MULTIPLICARION of two variables or a variable an integer.

DIVISION of two variables or a variable and an integer.

SQUARE ROOT of a variable.
SINE of a variable $\left(-360^{\circ} \leftarrow \mathrm{V} 2 \leftarrow-360^{\circ}\right)$
COSINE of a variable $\left(-360^{\circ} \leftarrow \mathrm{V} 2 \leftarrow 360^{\circ}\right)$

ARCTANGENT of a variable.
INCREMENT value of a variable - disregard digits after the decimal point.

DECREMENT value of a variable - disregard digits after decimal point.

JUMP to target $\$ 5$ (or value of $V 1$) if condition register $=0$ (equal to zero.)

JUMP to target $\$ 5$ (or value of $V 1$) if condition register $=0$ (not equal to zero.)

BGT P5 [BGT V1]	JUMP to target $\$ 5$ (or value of V1) if condition register >0 (greater than zero.)
BLT P5 [BLT V1]	JUMP to target $\$ 5$ (or value of V1) if condition register <0 (less than zero.)
BGE P5 [BGE V1]	JUMP to target $\$ 5$ (or value of V1) if condition register $>=0$ (greater than or equal to zero.)
BLE P5 [BLE V1]	JUMP to target $\$ 5$ (or value of V1) if condition register $<=0$ (less than or equal to zero.)
$\begin{aligned} & \mathrm{COR}=\mathrm{T} 10 \quad \mathrm{~V} 1=\mathrm{R} \quad \mathrm{~V} 2=\mathrm{L} \\ & {[\mathrm{COR}=\mathrm{Vn}]} \end{aligned}$	COPY values from tool store into variable store. [Selected tool can be established by value in Vn
$\begin{aligned} & \mathrm{COR}=\mathrm{T} 10 \mathrm{R}=\mathrm{V} 1 \quad \mathrm{~L}=\mathrm{V} 2 \\ & {[\mathrm{COR}=\mathrm{Vn}]} \end{aligned}$	LOAD values into tool store from variable store. [Selected tool can be established by value in Vn
TRF=G54 $\mathrm{X}=\mathrm{V} 1 \quad \mathrm{Y}=\mathrm{V} 2 \mathrm{Z}=\mathrm{V} 3$	LOAD values into zero shift store from variable store. [Selected zero shift can be established by value in Vn].
TRF=G54 V1=X V2=Y V3=Z	COPY values from zero shift store into variable store. [Selected zera shift can be established by value in Vn].
TRF=G92 $\mathrm{V} 1=\mathrm{X} \quad \mathrm{V} 2=\mathrm{Y}$	COPY active X and Y datum values (set by G92) in variable store.
TRF $=\mathrm{G} 20 \mathrm{~V} 1=\mathrm{X} \quad \mathrm{V} 2=\mathrm{Y}$	COPY active pole centre values (set by G20) into variable store.
TIM Vn	RECORD the time from the programme start in seconds.
TST Vn	SET condition register. [Condition register can In one of three states: positive(+); negative (zero (0)]
$\text { TST G1 [TST Gn }]$	```SET condition register (CR) to zero if G1 is active. [n can be 0-3, 17-19, 39, 53-59, 62, 63, 65, 66, 90, 94, 95, 97].```
TST QX [TST Qn]	SET condition register (CR) to zero if 'X' axis mirrored. [n can be $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{E}]$.
TST QM	SET condition register (CR) to zero if dimensions are metric.

